Grenzen überwinden – Höchstdotierte Siliciumkristalle für sparsamere Netzteile und effizientere Motorsteuerungen

Inhaltsverzeichnis

Bei der Erzeugung, Übertragung und Wandlung elektrischer Leistungen dominiert die auf dem Halbleitermaterial Silicium basierende Leistungselektronik. Speziell für Anwendungen bei niederer bis mittlerer Leistung und mittleren bis höheren Frequenzen, beispielsweise in Schaltnetzteilen, Robotern, Autoelektronik oder zur Ansteuerung von Motoren, kommen sogenannte PowerMOS-Bauelemente zum Einsatz.

Anfangsstücke von Siliciumkristallen mit unterschiedlichen Kristalldurchmessern und daraus gefertigten Wafern sowie Ausgangsmaterial für die Siliciumkristallherstellung.
© Fraunhofer IISB / Kurt Fuchs

Um die Widerstandsverluste von vertikalen leistungselektronischen Bauelementstrukturen in Durchlassrichtung zu minimieren, werden insbesondere n-Typ-Siliciumkristalle mit einem sehr geringen elektrischen Widerstand von 5.0 mΩcm bis hin zu 1.0 mΩcm benötigt. Die Siliciumkristalle werden nach dem Czochralski-Verfahren durch Ziehen aus der Siliciumschmelze hergestellt. Den niedrigen elektrischen Widerstand im einkristallinen n-Typ-Silicium erreicht man dabei durch eine gezielte Zugabe von Arsen oder Phosphor als Dotierstoff. Die hohen Mengen an benötigtem Dotierstoff können jedoch beim Herstellungsprozess kristallwachstumsinduzierte Störungen verursachen, wie z.B. Versetzungen im Kristall. Die Kristallfehler führen zum Verlust der einkristallinen Struktur des Siliciums und vermindern die Kristallausbeute, wodurch im Endeffekt der erzielbare Widerstandsbereich begrenzt wird. Für die beobachteten Störungen existieren zwar verschiedene Erklärungsansätze, jedoch sind weder die genauen Ursachen bekannt, noch gibt es etablierte, verfahrenstechnische Lösungsansätze für die Herstellung größerer Kristalldurchmesser.

An diesem Punkt setzen die Experten des Fraunhofer THM und der Siltronic AG an. Sie untersuchen systematisch die Grundlagen der kristallwachstumsinduzierten Störungen beim Ziehen von hochdotieren Siliciumkristallen und bestimmen die prozesstechnisch relevanten Parameter. Nur auf Basis einer soliden wissenschaftlichen Kenntnis der Grenzen des einkristallinen Wachstums von hochdotiertem Silicium können entsprechende kristallzüchterische Maßnahmen entwickelt und erprobt werden, um das untere Widerstandslimit bei großen Kristalldurchmessern abzusenken und die Kristallausbeute zu steigern.

Eine weitere Schwierigkeit, die die Forscher überwinden müssen, ist die Suche nach geeigneten Analysemethoden für die hochdotierten Materialien:

„Während bei niedrigen Dotierungen seit Jahrzehnten verschiedenste Messverfahren etabliert sind, um die unterschiedlichen physikalisch-chemischen Eigenschaften des Siliciums umfassend zu bestimmen, funktionieren diese aufgrund physikalischer Gründe meist nicht bei höchstdotiertem Material“ erklärt Dr. Jochen Friedrich, Sprecher des Fraunhofer THM und Leiter der Abteilung Kristallzüchtung am Fraunhofer IISB in Erlangen, einem der Mutterinstitute des THM.

„Deshalb werden wir auch neue Messverfahren austesten und genau untersuchen, ob sich damit die relevanten Eigenschaften von hochdotiertem Material bestimmen lassen“, so Dr. Jochen Friedrich.

„Dieses Projekt ist für Siltronic aus zwei Gründen interessant“, sagt Dr. Andreas Mühe, Leiter Operations Deutschland, Siltronic AG und Werkleiter des Standortes Freiberg. „Erstens ist Siltronic ein führender Hersteller von Siliciumwafern für Leistungselektronik und zweitens ist Siltronic tief in der Region Freiberg verwurzelt. Daher freuen wir uns ganz besonders, unseren Anteil zum Gelingen dieses spannenden Forschungsvorhabens beizutragen.“

Zwei Jahre haben die Forscher von Fraunhofer THM und Siltronic jetzt Zeit, um wissenschaftlich-technische Lösungen zu erarbeiten, damit die Herstellung von Siliciumkristallen mit sehr geringen elektrischen Widerständen für PowerMOS-Anwendungen wirtschaftlicher wird. Nicht zuletzt dadurch wird die Position des Industrie- und Forschungsstandorts Freiberg als Zentrum der deutschen Halbleitermaterialerstellung weiter gestärkt.

Quelle: Fraunhofer IISB

Kennen Sie schon die Leinwände von Inspiring Art?