An der TU Wien wurde eine Methode vorgeschlagen, millionenfach kürzere Lichtblitze zu vermessen als bisher – und zwar mit Geräten, die schon in wenigen Jahren am CERN aufgebaut werden sollen.
Bei der Kollision schwerer Atomkerne am CERN sollten sich die kürzesten Lichtblitze der Welt erzeugen lassen, das konnte ein Forschungsteam der TU Wien in Computersimulationen zeigen. Doch was nützen die kürzesten Lichtpulse, wenn sie zu schnell vorüber sind, um von heutigen Geräten überhaupt vermessen werden zu können? Nun wurde im Journal „Physical Review Letters“ eine Methode präsentiert, für die ultrakurzen Lichtpulse die genaueste Stoppuhr der Welt herzustellen – mit Hilfe eines Detektors, der im Jahr 2018 in die Anlage des LHC-Beschleunigers am CERN eingebaut werden soll.
Klein, kurz und heiß
Ultrakurze Lichtpulse werden verwendet, um physikalische Vorgänge zu untersuchen, die auf extrem kurzen Zeitskalen ablaufen. Mit speziellen Lasern sind heute Pulse in der Größenordnung von Attosekunden möglich – Milliardstel einer Milliardstelsekunde (10 hoch -18 Sekunden). „Bei Kern-Kollisionen in Teilchenbeschleunigern wie dem LHC am CERN oder am RHIC in den USA können aber Lichtpulse erzeugt werden, die noch einmal millionenfach kürzer sind“, sagt Andreas Ipp vom Institut für Theoretische Physik der TU Wien.
Beim Experiment ALICE am CERN werden Blei-Atomkerne fast auf Lichtgeschwindigkeit beschleunigt und dann zur Kollision gebracht. Aus Bestandteilen der Atomkerne und vielen weiteren Teilchen, die durch die Wucht des Aufpralls direkt beim Zusammenstoß erzeugt werden, entsteht ein Quark-Gluon-Plasma – ein Materiezustand, der so heiß ist, dass selbst Protonen und Neutronen aufgeschmolzen werden. Die elementaren Bestandteile der Materie – Quarks und Gluonen – bewegen sich wirr durcheinander. Dieses Quark-Gluon-Plasma existiert nur für die unvorstellbar kurze Zeitspanne von einigen Yoktosekunden (10 hoch -24 Sekunden).
Ideen aus der Astronomie
Im Quark-Gluon-Plasma nach einer Teilchenkollision können auch Lichtblitze entstehen, in denen wertvolle Information über das Plasma steckt. Doch herkömmliche Messmethoden sind viel zu langsam, um die Blitze auf der Yoktosekunden-Zeitskala aufzulösen. „Wir greifen daher auf den Hanbury Brown-Twiss-Effekt zurück, der ursprünglich für astronomische Messungen entwickelt wurde“, erklärt Andreas Ipp.
Bei Hanbury Brown-Twiss-Experimenten werden die Daten von zwei verschiedenen Licht-Detektoren miteinander verknüpft, daraus lässt sich beispielsweise der Durchmesser eines Sterns genau berechnen. „Anstatt räumliche Abstände zu studieren kann man diesen Effekt aber ebenso nutzen, um zeitliche Abstände zu vermessen“, sagt Peter Somkuti, Dissertant an der TU Wien, der einen großen Teil der Computersimulationen durchführte. Wie die Berechnungen nun zeigen, könnten die Yoktosekunden-Pulse durch ein Hanbury Brown-Twiss-Experiment aufgelöst werden. „Das wäre experimentell zwar recht aufwändig, aber es ist machbar“, sagt Ipp. Dafür würde man gar keine teuren zusätzlichen Detektoren benötigen: Die Messungen können mit dem „Forward Calorimeter“ durchgeführt werden, das 2018 am CERN in Betrieb gehen soll. Damit würde das ALICE-Experiment zur höchstauflösenden Stoppuhr der Welt werden.
Viele offene Fragen
Die Physik des Quark-Gluon-Plasmas ist nach wie vor voller ungelöster Rätsel: Es hat eine extrem niedrige Viskosität – ist also dünnflüssiger als alle Flüssigkeiten, die wir kennen. Außerdem strebt es extrem schnell in ein thermisches Gleichgewicht, auch wenn es anfangs in einem Zustand extremen Ungleichgewichts war. Die Vermessung der Lichtpulse aus dem Quark-Gluon-Plasma könnte wichtige neue Daten liefern, um diesen Materiezustand besser zu verstehen.
In Zukunft könnten die Lichtblitze vielleicht sogar verwendet werden, um Fragestellungen aus der Kernphysik zu untersuchen. „Experimente mit zwei Lichtpulsen hintereinander sind in der Quantenphysik sehr verbreitet“, sagt Andreas Ipp. „Der erste Lichtblitz ändert den Zustand des untersuchten Objektes, der zweite wird kurz darauf verwendet, um diese Veränderung zu messen.“ Mit Yoktosekunden-Lichtpulsen könnte man diese wohlerprobte Technik in Bereichen einsetzen, die der Forschung bisher noch völlig unzugänglich waren.
Quelle: TU Wien