Ziel: Mehr Datenübertragung dank Nano-Laser
Die Zielrichtung von SASER lautet: Dem übertragenen Lichtsignal mehr Informationen mitzugeben als bislang. Bis dato wird das Lichtsignal in der Glasfaser nur durch eine Intensitätsmodulation genutzt. Vereinfacht dargestellt: Ist es stark (oder „an“), dann wird eine 1 übermittelt, ist es schwach („aus“), eine 0. Pro Wellenlänge lassen sich so bis zu 100 Gigabit pro Sekunde übermitteln, zudem ist es inzwischen möglich, bis zu 1000 Wellenlängen parallel zu übertragen, also bis zu 10 Terabit – unvorstellbar viel, aber nicht genug, wenn man sich klarmacht, dass mancher einzelne Rechner inzwischen bis zu 10 Gigabit pro Sekunde abschicken oder empfangen kann. Das Licht kann aber mehr als an- und ausgehen, und das machen sich die Wissenschaftlerinnen und Wissenschaftler für die sogenannte „Kohärente Kommunikation“ zunutze.
So lässt sich innerhalb einer Wellenlänge die Phase verschieben, also ein bestimmter Abstand zwischen den Spitzen einer Welle einschieben. Wenn der Empfänger in der Lage ist, den Abstand auszulesen, lässt sich die Länge der Phasenverschiebung als weitere Information nutzen. Die Physiker sprechen hier von einem zusätzlichen „Freiheitsgrad“ des Lichts, der verschiedene „Zustände“ haben kann. Es gibt noch mehr Möglichkeiten: Die Amplitude, die Höhe des Wellenausschlages, lässt sich ebenfalls aufmodulieren. In modernen Mobilfunknetzen (UMTS, LTE) werden Phase und Amplitude bereits moduliert, für die Optik ist dieser Kunstgriff neu. Auch die Polarisation des Lichts, also die Schwingungsrichtung der Lichtwelle, lässt sich als zusätzliche Eigenschaft mit verschiedenen Zuständen mitgeben.
Stecknadelkopfgroßer Laserchip soll die Revolution ermöglichen
Aufgabe der Kasseler Professoren und ihrer Arbeitsgruppen ist es nun, diese Zusatzinformationen auslesbar zu machen. Während Prof. Witzigmann die zugrunde liegenden Phänomene theoretisch erklärbar macht, entwickelt das Team um Reithmaier einen winzigen integrierten Halbleiter-Laserchip, der als Referenzoszillator dient. Sein Licht wird mit dem übertragenen Signal abgeglichen; stimmen die Eigenschaften überein, registriert der Empfänger einen bestimmten Wert. Aus diesen Werten setzt sich die übertragene Information zusammen. Die Herausforderung ist, einen stecknadelkopfgroßen Laserchip so exakt herzustellen, dass er ein stabiles Lichtsignal abgibt.
Die Arbeitsgruppe um Reithmaier trägt dafür winzige, nur wenige Nanometer große Kristalle („Quantenpunkte“) aus Indiumarsenid auf ein Indiumphosphid-Trägermaterial. Jeder Quantenpunkt kann ein einzelnes Elektron auffangen und ein einzelnes Lichtteilchen aussenden. „Je gleichmäßiger die Quantenpunkte aufgetragen sind, desto höher ist die Qualität des Lichts“, betont Reithmaier. „Hierin sind wir weltweit führend.“ Zudem ist der Laser abstimmbar, das heißt sein Licht kann in Sachen Phasenverschiebung und Polarisation verschiedene Zustände annehmen und so mit dem Übertragungssignal abgeglichen werden.
Die Gruppe um Prof. Reithmaier hat in den Reinräumen des INA bereits die ersten Probe-Chips produziert, die nun getestet werden. Reithmaier: „Die ersten Ergebnisse sind ermutigend.“